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Modified Wilson action and Z, artifacts in SU(2) lattice gauge theory
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A modified Wilson action with an additional chemical potential for the number of “negative pla-
quettes” is used to study the role of Z, artifacts in SU(2) lattice gauge theory and their possible influence
on large-scale physics. The phase diagram of the model with modified action is studied. We show that
large-scale objects, e.g., Wilson loops and their ratios, can be strongly influenced by lattice artifacts.

The lattice approach has opened the possibility to use
powerful numerical methods for nonperturbative study of
gauge theories. One of the most popular choices of pure
gauge lattice action is the one proposed by Wilson [1] [for
the SU(2) group]:

]

where B=4/g2,..=4/g% U;=Uy, €SUQ) are the field
variables defined on the links / =(x,u), O=(x;uv) refers
to the location and orientation of the corresponding pla-
quette, and Uy are plaquette variables:

UD = Ux;yv= Ux;yUx+ﬂ;vUi+ v;pUx;'u . @)
The average of any field functional O(U) is defined as
(o) =27'[ T dU,0(Wexpl —Sy!UD], ()

links

where

Z=f [T dUexpl =Sy (UDT, @
links

with some choice of boundary conditions (periodic in our
case).

In the Monte Carlo approach, to calculate the average
of any field operator one must generate a sequence of
(equilibrium) field configurations: (U{)), (UZY),. ..,
with the weight P(U;)~exp[ —Sy(U;)] and average over
all of them.

The crucial question in this approach is whether these
field configurations provide an adequate representation of
continuum physics (at least, at moderately large values of
B). The well-known fact is that lattice theories can suffer
from lattice artifacts. One example of the influence of
such lattice artifacts is provided by the study of the topo-
logical properties of gauge theories.

Given the geometric approach to the definition of the
topological charge Q, [2,3], the topological susceptibility
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X, is defined as y,=(Q2)/V, V being the space-time
volume.

For any given lattice configuration ( Uy, ) the topologi-
cal charge @, is the sum over all lattice sites:
Q,=3q[ U], where for smooth enough fields

4
érz—e“vp,Tr(Fme )+0(a®), 5)
and, therefore, the value q{ U] has the correct classical
continuum limit. The crucial element is the notion of a
smooth field. In the quantized theory the contribution of
nonsmooth (rough) field configurations must be taken
into account. For example, small-scale fluctuations, i.e.,
fluctuations living on the scale size of, say, one lattice
spacing, and carrying a nontrivial topological charge (so-
called dislocations) can lead to the divergence of the to-
pological susceptibility in the continuum limit (at least
for this geometric definition of topological charge). One
source of trouble is the special field configurations con-
taining negative plaquettes: 1TrUp=~—1, [4-6]. A
similar situation takes place for the CP" ™! model with
n=<3[7]. .

Rough fluctuations can exhibit themselves in the form
of Z, strings and Z, monopoles [8-13]. Z, strings con-
sist of sequences of plaquettes where

q[U]=—

sgn(TrUg)=—1 (6)

and a Z, monopole is attached to a three-dimensional
cube cif

II sen(TrUL)==1. (7)
O€ec .

As was shown in Ref. [10], the number of Z, mono-
poles decreases exponentially with increasing 3

—c; B

Nz, B)~e 7, ®)
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where czzzZ. But this in itself does not mean that they

become unimportant at large 5. They can still strongly
influence any lattice average {@(U))(B) (say, Wilson
loops) which decays faster than N. Zz( B) with increasing j3,

and, so, even a small admixture of these rapidly varying
fields can become competitive. Note also that the density
of the Z, monopoles pzz~N zz(B) /a(B)? tends to infinity

in the continuum limit if one uses the standard two-loop
renormalization-group expression for the lattice spacing
a(fB).

It is very important to study the role of the underlying
Z, degrees of freedom to separate the “real” (large-scale)
physics from lattice artifacts. To do it one can modify
the lattice action in such a way that small-scale fluctua-
tions (with negative plaquettes) would be suppressed
without positive plaquettes being touched. So, the sim-
plest choice of modified action S serving this goal is

S=8y+S, , ©)

where S} is the standard Wilson action and S, is the ad-
ditional term which suppresses the negative plaquettes:

Sp=A 3 [1—sgn(TrUg)] . (10)
o

The parameter A plays the role of a chemical potential for
the number of negative plaquettes. [One can choose
A=A(B) in the form A=18.]

Note that this modified action is unchanged for
plaquettes near the identity. This means that the

. =.__Lr =.____l 4 1 ._a_ i
F,(B;A) 4, deF(U)Xp(U) 2md, fo da sin—sin

2

For an N, XN, lattice one can easily obtain the parti-
tion function Z in the limit N,, N, — 0:

Z=exp[—(B+ANgIFa®(B,A), Ng=N,N, . (13)

If A=0 this reduces to the well-known expression for the
partition function:
ND

20
B 1 (14)

Z(B,A=0)=exp(—BNp) 8

where I,(B) is the modified Bessel function.
Using Eqgs. (11)-(13) one can easily produce an expres-
sion for the average plaquette ([1):

1 3z _ F1pBR)

N e TR XT-RY

(15)

At B=0 {(O)(B=0;A)=(4/37)tanh(R).
shows the ratio of plaquettes,

Figure 1(a)

(OX(B,\)

’A'= ?
rEM= a8 A=0)

(16)
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modification does not influence the formal continuum
limit. Furthermore, perturbative aspects of the theory
are completely unmodified. In particular, the scale fac-
tors for asymptotic freedom are independent of A.

The action (9) and (10) with A= was used in Ref. [9]
(“positive plaquette model”). We study the phase struc-
ture of this model in the (B,A) plane as well as the
influence of small size lattice artifacts on ‘“physical”
values. From this point of view it is reasonable to use
finite values of A to understand better the structure of lat-
tice theory.

It is perhaps instructive to study the role of lattice ar-
tifacts in two-dimensional (D =2) lattice gauge theory.
Note first that, in two dimensions, because the coupling is
dimensional (contrary to the D =4 case), the number of
negative plaquettes at A=0 dies out faster than exponen-
tially with the lattice spacing; so, the density of Z,
strings tends rapidly to zero when f8 tends to infinity.
This gives us confidence that at high enough values of S
negative plaquettes play a negligible role.

To study this further one can apply the character ex-
pansion

F(U)=exp[3BTrU +Asgn(TrU)]

= 3 4, F,(BAx,U), (11
p=0;%;1;. ..

where y,(U) is the character of pth representation of the
SU(2) group, d,=2p +1 and

1 a a
p+2 a exp Bcos2+ksgn cos—

] . (12)

[

as a function of B at A=ow. At small B this ratio
is high but in the weak-coupling regime (B— o)
Y(B,A=w)—1. At very high values of B, negative pla-
quettes give a negligible contribution to the average pla-
quette, as it must be. But for Wilson loops the situation
is different. The expression for the /; X/, Wilson loop is
of the form

aay— | F12BA) hh
W(11,12,B,l)— m
=[{aY@B,M]" 1n
and
Wl 1 BA=0)= 1,(B) L1,
1> Z:B) - - Il(ﬁ)
=[(O)B,A=0)]"" . (18)
Therefore the ratio
W, 1;8,A)
= =[y(BM]"" (19)

wl,,l,;B,A=0)
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differs from unity more and more with increasing the size
for the loop /,1,; e.g., the “local” objects (negative pla-
quettes) can strongly influence large-scale objects.

Of course the strong dependence of Wilson loops on
negative plaquettes does not mean that string tension has
such a strong dependence also. Wilson loops, Eq. (17),
have area-law behavior with the string tension o depend-
ing on A. At A=0,

LBy 3

o(B,A=0)~pIn -

L(B) 2 (20)

at B—o .

Figure 1(b) represents the dependence of the string ten-
sion o =0 (B,A) on B at different values of A. One can see
that while the asymptotic behavior of o does not depend
on A, in the intermediate region of 8 (B<8) the depen-
dence on the number of negative plaqueties is still
present. This clearly illustrates how different actions
with the same continuum limit can have differing finite
lattice artifacts.
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FIG. 1. The ratio of plaquettes {(01)(B8,A= o0 )/{0)(B,A=0)
as a function of B in two-dimensional lattice gauge theory
(LGT) (a); The dependence of o(B;A) in D=2 LGT on § at
different values of A (b).
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FIG. 2. Plaquette distribution at 8=1.5 at different values of
A.

We now return to the four-dimensional SU(2) theory.
Monte Carlo calculations were made on 4%, 6, and 12*
lattices with periodic boundary conditions. Some calcu-
lations were also made on the 1 X 6° lattice.

The modification of the action in Egs. (9) and (10)
changes, evidently, the distribution of plaquettes P, (),
suppressing (at A>0) negative values of O0. At nonzero
values of A the distribution develops a singularity at zero
for the plaquette 0. The strength of this singularity in-
creases with increasing |A|. In Fig. 2 one can see the dis-
tributions P, (0) (normalized to the same value) at A=0,
0.5, 1.5 and B==1.5. At negative values of A an enhance-
ment of negative plaquettes takes place.

Figure 3 represents the dependence of the number of
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FIG. 3. The dependence of In(N_/Ng) on B at different
values of A.
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FIG. 4. The dependence of average plaquette ({1} on B at
different values of A.

negative plaquettes In(N_ /N) on B at different values
of A. Broken lines correspond to the exponential behav-
ior

~exp(—cgB—c ), (21)

where the coefficients ¢z and c, are chosen to be c5=2.0
and ¢, =2.1. Choosing A=Ay8 one can obtain an ex-
ponential decay of the number of negative plaquettes in
the continuum limit with any slope depending on the
choice of Aq.

It is well known that in the theory with the standard
Wilson action {A=0) there is a rapid change in behavior
of the average plaquette {1)(B) (crossover) at f~2.2

[14,15]. At positive values of A the dependence of
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FIG. 5. Phase diagram in the (5,A) plane.
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{(O)(B) on B becomes increasingly smooth with increas-
ing A, and at large enough values of A the crossover
disappears (see Fig. 4). So, the boundary between the
strong- and weak-coupling regions becomes invisible. At
negative values of A the crossover, to the contrary, be-
comes much more pronounced and at AS —1 the first-
order phase transition appears.

It is interesting to compare this behavior of (O01)()
with that in the MP model [8] including the chemical po-
tential Ayp suppressing only Z, monopoles but not Z,
strings. In this model at a positive and large enough Ayp
the crossover disappears but instead a first-order phase
transition develops at S~ 1.0 [10]. Behavior similar to
ours takes place also in the monopoleless SO(3) model [9].

In Fig. 5 we show the phase diagram of this model in
the (5,A) plane. At negative values of A there is the line
of first-order phase transitions along which the average
values of the plaquette have a discontinuity. This line
ends at A~ —1 and B~2.5. Therefore the crossover in
the lattice theory with the standard Wilson action (A=0)
can be regarded as a shadow of this line in the (3,A)
plane.
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FIG. 6. The ratio of Wilson loops
W, I;A=0.5)/W(I,I;A=0) at B=2.5 (a). The ratio

x(I;A=0.5)/x(I;A=0) at B=2.5 (b). Data for W(I,I;A=0)
are from Ref. [16].
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We calculated Wilson loops W(I,J;8,A) on the 12* lat-
tice in the interval 2.0=<8=<2.5. In Fig. 6(a) one can
see the ratio of Wilson loops W(I,I;8,A=0.5)/
W(I,I;8,A=0) at B=2.5. Data for W(I,I;B8,A=0) are
from Ref. [16]. A comparison of Wilson loops in the
modified theory with that for the standard Wilson theory
shows the same behavior as in the case of two-
dimensional theory: the more the size of the loop the
more deviation from standard theory (and more influence
of lattice artifacts). Note that at this value of 8 negative
plaquettes make up less than 1%: N_-/Ny=0.01.

A possibly more physical issue involves the behavior of
the value y(I;5,A),

W+ 1,I+1;8,AMW,I;B,A)
W((I+1,L8,MWUI,I+1;8,A) °

which is connected with the string tension. In Fig. 6(b)
one can see the behavior of the ratio y(I;A=0.5)/
x(I;A=0) at B=2.5. One can see the strong influence of
lattice artifacts on string tension. This is indicative that
the start of the scaling region can depend on the detailed
action.

As is well known on an asymmetric lattice N, X 3 a
second-order deconfinement phase transition takes place
at some critical value §=p, in standard SU(2) Wilson
theory. The order parameter is the average Polyakov
loop {L ) which is defined as

XI;B,A)=—In

(22)

(LY=2z7! [ T] dU,L(x)exp[ —Syp(U)], (23)
links
where
P
L(x)EETr I1 Uux,t) (24)
t=1

We expect (L) to be O for B below the critical point 3,
and different from zero (in the infinite-volume limit) at
B>B,.. On the finite lattice N,N? the symmetry is never
broken and (L ) equals zero at all 8 because of tunneling
between different minima of the effective potential. Nev-
ertheless, the deconfinement phase on the infinite lattice
manifests itself on the finite lattice with the double-peak
distribution P(L) where L is the average of Polyakov
loops through the whole lattice for a given configuration.

Z= [ TI dU, [T exp[4BTrUg+Asgn(TrUg)]
3 A.

links

= [ 14U, T1 3 4,F,(B;M)x,(Ua)
links o p

=[F0(B;M]Naf MM aU T [1+24,,BM)x,(Ug)+ -+ ],

links m]

where

F,(B;A)
Fy(B;A)
and coefficient functions F,(B;A) are defined in (12).

A, (BA)= ~ (26)
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FIG. 7. Polyakov loop distribution for 1X6° lattice and
B=0.1 at infinite lambda.

The strong influence of negative plaquettes on the posi-
tion of the critical point B, was observed in Ref. [9]. We
would like to note here that in some extreme cases the
abolishing of negative plaquettes can entail the disappear-
ance of the finite-temperature phase transitions. We cal-
culated the distribution of the Polyakov loop P(L) on the
lattice 1X6° at values of B in the interval 0.01 $BS2.0.
On this lattice in the theory with standard Wilson action
the critical point is at 8,=0.87 [17]. In the modified
theory without negative plaquettes (A=) the
confinement phase does not exist. Figure 7 presents the
distribution of P(L) for B=0.1 and A= on the lattice
1X6% One can see the distribution has a sharply pro-
nounced peak at L ~0.8 and {|L|)=~0.67. The further
decreasing of 8 down to 8=0.01 does not change this
picture. This means that whether or not the finite-
temperature phase transition on the lattice with N,=1
exists it is controlled by lattice artifacts.

To understand better the nature of this drastic
influence of a rather small admixture of negative pla-
quettes on the thermodynamic properties of theory, let us
represent the partition function Z in the form

25)

Therefore all “observables” (Wilson loops, etc.) are
defined by the set of coefficient functions 4, 4,,,
Ay,.... Suppose for simplicity that only the first
coefficient function A4,,(B,A) plays a crucial role
[ 4,(B,A),. .., are essentially smaller ]. Compare the be-
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havior of A4,,,(B,A=0) (standard Wilson theory) with
A, (B,A50). Figure 8 shows the S dependence of
A ,(B,A=0c0) (upper curve) and 4, ,(B,A=0) (lower
curve). One can see that

A1 (B A=x)> 4, ,(B,A=0)
at all B, and

4
A =0,A=ow0 )=—550 .
1/2(3 °°) 317_7&

Choosing two values B, and 8, in such a way that
Ay p(BrA= )= 4, ,(BA=0)

one obtains 8, <fSB,. So the standard Wilson theory with
B=pB,=2.4 corresponds (in the chosen approximation) to
the modified theory with =f,~1.0. Note that because
the renormalization scales for the two theories are the
same, the size of this shift should decrease as we go to
larger beta.

There can be other short-range fluctuations due to
which the topological charge is not a well-defined object
(at least, event by event) [6,18].

Another important point is that there can be lattice ar-
tifacts at other scales which are in addition to and in-
dependent of small size artifacts [8,12]. Indeed, if
Tr(UpUg) is less than zero, we can say that there is a
string through the 2X1 rectangle. On the other hand,
Tr(UgUm )#=Tr(UL)Tr(Uy) and this means that the
presence of this “thick” string does not depend on the
presence of “thin” strings through the plaquettes [0 and
O (see, e.g., [10]). Therefore at all scales the Z, artifacts
can exist. But the study of those larger size artifacts is
beyond the scope of this paper.

In an optimistic scenario the A modification of the ac-
tion may improve the approach to scaling. On the other
hand, it may be that the negative plaquettes in the Wilson
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FIG. 8. The dependence of the coefficient functions

A1,(B,A) on B at A= (upper curve) and at A=0 (lower
curve).

theory are accidentally canceling some other artifact,
making scaling fortuitously good in the standard ap-
proach. At the same time it is impossible to exclude the
situation that this A-modified model belongs to some oth-
er universality class than the Wilson theory. To answer
this question it is necessary to calculate the “physical”
values, e.g., the ratio of the string tension to the critical
temperature o'/2/6, and compare them with that calcu-
lated in the standard Wilson theory. This work is in pro-
gress.
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